Engineered nanodrug targeting oxidative stress for treatment of acute kidney injury

Engineered nanoparticles targeting oxidative stress have shown promising perspectives in treating acute kidney injury (AKI). By examining the challenges, advancements, and limitations of different studies in this field, this review fills a significant knowledge gap. In addition, it offers valuable insights for future research on engineering nanoparticles to address AKI.


Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function, and is associated with a high risk of death. Many pathological changes happen in the process of AKI, including crucial alterations to oxidative stress levels. Numerous efforts have thus been made to develop effective medicines to scavenge excess reactive oxygen species (ROS). However, researchers have encountered several significant challenges, including unspecific biodistribution, high biotoxicity, and in vivo instability. To address these problems, engineered nanoparticles have been developed to target oxidative stress and treat AKI. This review thoroughly discusses the methods that empower nanodrugs to specifically target the glomerular filtration barrier and presents the latest achievements in engineering novel ROS-scavenging nanodrugs in clustered sections. The analysis of each study’s breakthroughs and imperfections visualizes the progress made in developing effective nanodrugs with specific biodistribution and oxidative stress-targeting capabilities. This review fills the blank of a comprehensive outline over current progress in applying nanotechnology to treat AKI, providing potential insights for further research.

Author list:

Liwen Li, Yining Shen, Zhongmin Tang, Yuwen Yang, Zi Fu, Dalong Ni*, Xiaojun Cai*

How to cite:

L. Li, Y. Shen, Z. Tang, Y. Yang, Z. Fu, D. Ni, X. Cai, Exploration 2023, 3, 20220148.