Minimally invasive power sources for implantable electronics

This review paper provides a comprehensive overview of the historical development of implantable medical electronics (IMEs) and three main categories of applicable alternative minimally invasive power sources. A detailed discussion of energy storage and harvesting mechanism, configurational design, output power and in vivo applications is given. An outlook based on the current advancements and limitations is also presented.


As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given. Despite recent advances in microfabrication techniques, biocompatible materials have facilitated the development of IMEs system toward non-invasive, ultra-flexible, bioresorbable, wireless and multifunctional, progress in the development of minimally invasive power sources in implantable systems has remained limited. Here three promising minimally invasive power sources summarized, including energy storage devices (biodegradable primary batteries, rechargeable batteries and supercapacitors), human body energy harvesters (nanogenerators and biofuel cells) and wireless power transfer (far-field radiofrequency radiation, near-field wireless power transfer, ultrasonic and photovoltaic power transfer). The energy storage and energy harvesting mechanism, configurational design, material selection, output power and in vivo applications are also discussed. It is expected to give a comprehensive understanding of the minimally invasive power sources driven IMEs system for painless health monitoring and biomedical therapy with long-term stable functions.

Author list:

Ming Xu, Yuheng Liu, Kai Yang*, Shaoyin Li, Manman Wang, Jianan Wang, Dong Yang, Maxim Shkunov, S. Ravi P. Silva, Fernando A. Castro, Yunlong Zhao*

How to cite:

M. Xu, Y. Liu, K. Yang, S. Li, M. Wang, J. Wang, D. Yang, M. Shkunov, S. R. P. Silva, F. A. Castro, Y. Zhao, Exploration 2023, 4, 20220106.